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Abstract

The numerical simulation of wave propagation can be
represented by a propagator matrix applied to previous
instances of the wavefield. To make this procedure
feasible, the propagator matrix must be approximated by
a low-rank representation. While the underlying idea is
to correctly represent the kinematics of the wavefield with
no particular regard to its dynamics, it is important to
understand its amplitude properties. Therefore, in this
work, we evaluate the absolute and relative performance
of the lowrank method for the simulation of 2D acoustic
wave propagation with respect to its dynamic quality.
We start our analysis in homogeneous media, where
theoretical expressions for the wavefield are available.
We find that the method provides not only an excellent
kinematic approximation, but also reliable amplitudes. In
our implementation, the quality of the dynamics was
affected by the temporal sampling interval. Choosing a
model-dependent time sampling, we could confine the
dynamic error to less than 1% for all tested models.
Next we tested the quality of the simulated reflection
coefficients in media with a single horizontal reflector
in comparison with the theoretical results and those
obtained using a standard second-order finite-difference
(FD) method (implementation from SU). The reflection
coefficients approximated by the lowrank method were of
the same quality or slightly superior to those obtained by
FD. It is to be stressed that, while comparing unfavorably
with FD regarding computation time for small models, its
quasi-linear scaling with model size makes the lowrank
method superior for large models.

Introduction

Over the years, the reflection seismic method has been
applied in order to obtain accurate subsurface information.
For this, it is crucial to understand and being able to
simulate seismic waves propagation, e.g. in applications
like reverse-time migration or full-waveform inversion. In
this context, various methods for numerical modeling of
seismic waves have been proposed.

Since the analytical solution of the wave equation is only
possible in very simple media, numerical approximations
are needed to approximate the wavefields in real media.
One of the most used methods is the extrapolation in
time, approximating the partial derivatives by a finite-
difference (FD) scheme (Etgen, 1986). Another way often
employed is the use of spectral methods that apply the

Fourier transform to the wave equation to manipulate
it in the domains of the variables associated with the
spectrum, that is, the temporal frequency and the spatial
frequency or wavenumber, associated with the coordinates
of time and space, respectively. A relatively recent method
is the modeling of wave propagation by the lowrank
method. It comprises the approximation of the wave
propagation operator in the mixed domain of space and
wavenumber. The lowrank decomposition makes use of
the sparsity of the propagator matrix, selecting a lower-
dimensional set of representative spatial locations and
a lower-dimensional set of representative wavenumbers
(Fomel et al., 2013). In this work, we evaluate this latter
method to numerically approximate wave propagation in
2D acoustic media. Although the method is derived based
on kinematic arguments, we are particularly interested in
evaluating its dynamic behavior.

Wave Equation Extrapolation

The 3D acoustic wave equation with constant density is
given by

∂ 2

∂ t2 P(x, t) = v2
∆P(x, t), (1)

where v denotes the propagation velocity, and P is the
acoustic wavefield. Considering the constant velocity, one
can apply the spatial Fourier transform, defined in this
paper by

P̂(k, t) =
1

(2π)3

∫
∞

−∞

P(x, t)e−ix·kdx, (2)

By the inverse Fourier transform, given a fixed initial t0, the
acoustic pressure for t = t0 +∆t can be represented by

P(x, t0 +∆t) =
∫

∞

−∞

P̂(k, t0)ei [x·k−v‖k‖∆t]dk. (3)

To generalize the last procedure to a medium with a varying
velocity, one can use the candidate

P(x, t0 +∆t) =
∫

∞

−∞

P̂(k, t0)eiφ(x,k,∆t)dk, (4)

where φ(x,k,∆t) represents a generalized phase function
defined in the mixed domain of space and wave number.
Substituting the derivatives of the candidate into the wave
equation, we obtain two differential equations for φ ,(

∂φ

∂ t

)2
= v2|∇φ |2, (5)

e
∂ 2φ

∂ t2 = v2
∆φ , (6)
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which can be satisfied simultaneously.

Extracting the square root of the first expression, we find
that φ must satisfy

∂φ

∂ t
=±v|∇φ |, (7)

where we choose the positive sign, which is associated
with the outward propagation direction.

We now consider the Taylor series of the phase operator
around ∆t = 0

φ(x,k,∆t) = φ0(x,k)+φ1(x,k)∆t +φ2(x,k)
∆t2

2
+O(∆t3),

(8)

where φn = ∂ nφ

∂ tn

∣∣∣
∆t=0

. The initial condition of the phase
function is obtained when substituting ∆t = 0 in equation
(4). In this case, the equation must reduce to the inverse
Fourier transform, which implies

φ0(x,k) = φ(x,k,0) = x ·k. (9)

It follows that φ can be written as

φ(x,k,∆t) = x ·k+φ1(x,k)∆t +φ2(x,k)
∆t2

2
+O(∆t3). (10)

The terms φ1 and φ2 represent the first and second time
derivatives of φ and can be approximated by imposing
equations (6) and (7).

By calculating the gradient with respect to x of the last
expression it is possible to obtain a linear approximation
for the gradient of the phase function φ , given by

|∇φ | ≈ ‖k‖+ ∇φ1 ·k
‖k‖

∆t. (11)

On the other hand, by deriving the Taylor series with
respect to time and neglecting second order terms

∂φ

∂ t
≈ φ1(x,k)+φ2(x,k)∆t. (12)

The use of approximations (11) and (12) in (7) and equating
the terms of equal powers of ∆t results in

φ1(x,k) = v‖k‖, (13)

and
φ2(x,k) = v(∇v ·k). (14)

Substituting these last two expressions into the equation
(10), we can conclude that

φ(x,k,∆t)≈ x ·k+ v(x)‖k‖∆t + v(x)(∇v ·k)∆t2

2
. (15)

We are looking for an approximation for the phase function
φ(x,k,∆t) for small steps ∆t. Therefore, in equation (15) we
can neglect the second-order terms onwards, which leads
to the following expression for the phase function

φ(x,k,∆t)≈ x ·k+ v(x)‖k‖∆t. (16)

The last equation was previously derived by Etgen
& Brandsberg-Dahl (2009). The form of the phase
function in equation (16) is particulary attractive because
it immediately allows to generalize the approximation (4). It
remains applicable when one has a closed expression for
the phase velocity in the mixed space (x,k), i.e., v = v(x,k).
Then, equation (4) becomes

P(x, t0 +∆t)≈
∫

∞

−∞

P̂(k, t0)ei[x·k+v(x)‖k‖∆t]dk. (17)

While equation (17) could be directly applied for wave
propagation, it can be modified to avoid a complex
propagator matrix. Using this equation again to express
P(x, t0 − ∆t), adding the two together and subtracting
2P(x, t0), we can write

P(x, t0 +∆t) ≈ 2P(x, t0)−P(x, t0−∆t)

+2
∫

P̂(k, t0)eix·k[cos(v(x)‖k‖∆t)−1]dk.

(18)

Our implementation makes use of this form, which relies on
a real-valued propagator matrix and helps to stabilize the
numerical computations.

As we can see from equation (4), the basic idea
of this wave-propagation procedure is based on
kinematic considerations, superimposing wavefields
in a kinematically correct way in order to predict the
wavefield at a later time. However, being an approximate
generalization of equation (3), which is an exact solution of
the acoustic wave equation for constant v, we can expect
an approximately correct dynamic behavior. It is for this
reason that we performed our numerical experiments to
evaluate the dynamics of this approximation.

Wave extrapolation matrix

By discretizing the equation (18), we can write it as

Pj,s+1 = 2Pj,s−Pj,s−1 +∑
l

∆kW jl P̂l,se
ix j ·kl (19)

where Pj,n = P(x j, tn), P̂l,n = P(kl , tn), and W jl denotes the
wave extrapolation matrix, defined by

W jl =W (x j,kl)≈ 2[cos(v(x j,kl)‖kl‖∆t)−1]. (20)

Matrix W has dimension Nx × Nk, where Nx and Nk are
the dimensions of the vectors x and k, respectively, the
dimensions of the full model and wavenumber spaces,
because W depends on the spatial and spectral variables.
Thus W is a large but sparse matrix. The goal of the
lowrank method is to take advantage of the sparsity and
decompose the matrix using smaller dimension matrices.
That is, an approximate factorization of (20) is sought, with
fixed ∆t, of the form

W (x,k)≈
Mk

∑
m=1

Mx

∑
n=1

U(x,km)MmnV (xn,k), (21)

where Mx and Mk are significantly smaller dimensions than
Nx and Nk. Substituting (21) into (19), we obtain

Pj,s+1 = 2Pj,s−Pj,s−1 +
Mk

∑
m=1

U jm

[ Mx

∑
n=1

Mmn ∑
l

∆kVnl P̂l,se
ix j ·kl

]
, (22)
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where the innermost sum is the discrete Fourier transform
of Vn,l P̂l,s. Because of the significantly lower dimensions
of the inner matrix Mmn, the number of floating point
operations in equation (22) is greatly reduced.

Lowrank decomposition

Here, we describe the procedure to find an adequate
representation of the inner matrix Mmn and the
transformation matrices U jm e Vnl .

The idea of the lowrank method is to find a lowrank
approximation of a sparse matrix W of rank r, defined by
the factorization

W≈ UMV∗, (23)

where ∗ denotes the adjoint matrix, i.e., the conjugate of
the transposed matrix. Here, U is a submatrix that consists
of a set Π1 of columns associated with {k} approximating
W(:,Π1), V∗ is a submatrix that consists in the subsest Π2
of rows associated with {x} approximating W(Π2, :) and M
is a r× r matrix with complete rank equal to r.

The submatrices U and V∗, both orthonormal, are
constructed such that the columns of U and the rows of
V∗ can accurately generate the column space and the row
space of W, respectively. The algorithm starts by selecting
a random set Ω1 of a sufficiently large number of columns
of W. Generally, 3 or 4 times the expected rank r of W
is sufficient. To obtain the largest possible r-dimensional
parallelepiped, we compute the QR-decomposition with
column pivoting (Meyer, 2000) of W(:,Ω1). In our numerical
experiments, the resulting rank r was estimated by the
following stopping criterion: If the ratio between the first
and the current pivot of the QR factorization is smaller than
10−6, the decomposition is stopped and the rank r is equal
to the number of pivots in the previous step. Thus, we have
Q1 from

W(:,Ω1)P1 = Q1R1, (24)

where P1 is the column permutation matrix, Q1 is the
orthogonal matrix and R1 is the upper triangular matrix.
Then, the first r pivot columns of Q1 will form the set Π1
of columns in U . In practice it is observed that the volume
of the parallelepiped generated by the columns in U(:,Π1)
is always close to the maximum possible volume. This is a
consequence of the oscillatory nature of the columns in W
(Fomel et al., 2013).

Analogously to the previous step, one chooses a similar-
sized set Ω2 of rows of W and searches for the r-
dimensional parallelepiped with largest volume. For this,
one computes the QR decomposition with column pivoting
on W(Ω2, :)∗, to obtain

W(Ω2, :)∗P2 = Q2R2. (25)

It follows that the first r pivot rows of the matrix Q2 will form
the Π2 set of rows in V∗.

Once the matrices U and V are computed, the next step is
to obtain the low rank matrix M : r× r such that W≈UMV∗.
To reduce the cost of determining the matrix M, Fomel et al.
(2013) propose to choose a set Y of s random rows and a
set Z of s random columns of W and minimize

min
M
‖W(Y,Z)−U(Y, :)MV∗(Z, :)‖F . (26)

The result of the minimization procedure (26) can be
explicitly represented as

M = (U(Y, :))† ·W (Y,Z) · (V ∗(:,Z))†, (27)

where (·)† indicates the pseudo-inverse.

Results

Homogeneous medium

In a homogeneous medium, the analytical solution of the
wave equation is given by the convolution between the
source function and the Green’s function. This allow to
evaluate the accuracy of the numerical solution, obtained
by the lowrank method.

Our first model called model A (901×451), is a 2D
homogeneous medium with propagation velocity 2000 m/s,
a surface extension of 9 km and a depth of 4.5 km,
discretized with a spatial sampling interval ∆x = ∆z = 10 m.
For the first numerical experiment, we used an injector
source located at 4.5 km from the origin with a depth of
1 km. The maximum propagation time was 2 s with a time
sampling interval ∆t = 0.001 s. The receiver is located
at 4.5km from the source at a depth of 3 km. The pulse
injected into the impulsive source is a Ricker wavelet with a
peak frequency of 5 Hz. To obtain the reference analytical
response as a variation of the wavefield as a function of
time, we compute the convolution of the pulse and the 2D
Green’s function.

Figure 1 shows the temporal traces of the analytical
solution and that obtained using the lowrank method,
which show an excellent coincidence. The pulse shape
in the two traces is almost identical, with lowrank slightly
overestimating the amplitude. The arrival time of the events
is indistinguishable and their value of 1 s is correct for the
propagation distance of 2 km in a medium with a velocity
of 2000 m/s. The relative dynamic error of the modeling
considering the peak of the traces was 0.015 %. The
numerically estimated rank r of the propagator matrix was
equal to 2.

To verify wether the slight differences of the pulses in the
traces in Figure 1 are the consequence of a kinematic error
or a phase error of the modeled pulse, we have calculated

Figura 1 – Comparison of the temporal traces of the
analytical solution with the solution obtained using the
lowrank method on model A with ∆t = 0.001 s.
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Figura 2 – Temporal envelopes of the analytical solution
with the solution obtained using the lowrank method on
model A with ∆t = 0.001 s.

the normalized envelopes of the analytical solution and the
approximation obtained using the lowrank method, shown
in Figure 2. Since the envelopes are virtually identical, we
conclude that the travel time of the pulses is correct, and
the fact that the pulses in Figure 1 are not fully coincident
is due to a phase difference between the pulses.

From this experiment, we conclude that the lowrank
method is capable of calculating highly accurate numerical
approximations to acoustic wave propagation in a
homogeneous medium.

To check wether the quality is comparable with that of
the finite difference method, we compared our results to
those obtained with the sufdmod2 program of Seismic
Un*x. The latter program uses the traditional second-order
approximation in time and space for the partial derivatives
in the wave equation. Since this program fixes the time
sampling interval automatically so that the stability of the
method is obeyed, we used the same ∆t for the lowrank
method in this comparison.

For this experiment with model A, the SU program fixes the
temporal sampling interval at 0.0025 s. Figure 3 shows the
snapshot of the propagation at time t = 1.5 s, modeled by
the lowrank method (Figure 3a) and by finite differences
(Figure 3b). We observe two very similar results, the
only perceptible difference being the different shape of the
border reflection at the top, caused by a different quality of
the absorbing boundaries.

The amplitude scaling of the modeled wavefield is different,
though, as revealed by the comparison of the vertical
traces at the source position in these snapshots (compare
the lowrank result in Figure

We note that the direct wave is kinematically positioned
correctly in both slices, but that the amplitudes are
dfferent by an order of magnitude. We can also observe
the different format and positioning of the boundary
reflection. Note that for this example, the FD result is
free of the noticeable numerical dispersion. Other spatial
discretizations led to perceptible dispersion.

Considering again the receiver located at 4.5 km from the
origin and at a depth of 3 km, the temporal traces of the
modelings are compared correspondingly with respect to
the analytical solution. Figure 6 shows the temporal traces

of the analytical, lowrank and finite difference solutions.
To be able to plot the traces approximated by the two
methods in a single figure, we have normalized them by
an amplitude scale, determined by the peak amplitude ratio
between the analytical solution and the approximate traces.
The resulting scale factor for the lowrank method was 1.02
and for finite differences, 0.06. Note that for the given
discretization, the lowrank method slightly undersizes the
wave, while, finite differences considerably oversizes the
theoretical solution. By comparison with the previous
experiment, in which only the time sampling was different,
we note a small amplitude decay with increasing sampling
rate of the lowrank method. This behavior has been
confirmed by means of other experiments not shown here.

Analysis of the Reflection Coefficients

To analyse whether the lowrank method can also well
approximate the amplitudes of reflected waves, we devised
another experiment with a single planar horizontal reflector.
In such a model, the reflection coefficients should be well
approximated by the theoretical formulas for the plane
wave reflection coefficients.

Our specific model B has again a horizontal extension of
9 km and a depth of 4.5 km with a spatial sampling of
10 m. It consists of a homogeneous overburden with a
wave speed of 2000 m/s and a single planar horizontal
reflector at a depth of 2 km. The velocity of the medium
below the reflector was 2200 m/s.

To determine the reflection coefficients obtained by
the lowrank and finite difference methods without any
perturbation by the direct wave and boundary effects, we
performed three numerical experiments. The source is
located at the same position for all three experiments,
being at x = 4500 m, z = 1000 m. For the first experiment
we recorded the wave propagating in model B with an
arrangement of 200 receivers at the depth of 500 m,
spaced 10 m apart with a end-on spread configuration and
one receiver at normal incidence. The second and third
experiments consider a homogeneous medium with the
same dimensions as model B and a constant wave velocity
of the upper part of model B, i.e., 2000 m/s. In the second
experiment, we record the wavefield in this model at the
same receivers of the first experiment, and in the third
experiment, we record it at the mirror receivers, positioned
symmetrically to the original receivers with respect to the
reflector position. In this way, the propagation distance, and
thus the traveltime and geometrical spreading, to the mirror
receivers in the third experiment are the same as for the
reflected wave in the first experiment. Thus, by subtracting
the result of the second experiment, which contains
only the direct wave and possible boundary reflections,
from the result of the first experiment, we extract the
reflected event. Dividing this difference by the result of
the third experiment, we obtain the approximate reflection
coefficients as simulated by the respective method.

In this experiments, we fixed the temporal sampling
interval for lowrank at 0.001 s, while the one for finite
differences was determined by the program using the
stability condition. For model B, the temporal discretization
of finite differences was 0.00227273 s, which was then
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(a) Lowrank Approximation (b) Finite Differences

Figura 3 – Wavefield snapshot in model A with an wave source located 4.5 km from the source with a depth of 1000 m after
1.5 s.

Figura 4 – Vertical spatial slice through the lowrank
wavefield snapshots at the source position in Figure 3(a).

Figura 5 – Vertcial spatial slice through the FD wavefield
snapshots at the source position in Figure 3(b).

fixed for all three numerical computations. Figure 7 shows
the reflected event recorded at normal incidence after
subtracting the direct wave (blue line) and the direct wave at
the corresponding mirror receiver (green line) as modeled

by the lowrank method. As expected, the events are
kinematically coincident. The ratio of these traces defines
the modeled reflection coefficient at normal incidence.

Correspondingly, the reflection coefficients at other
incidence angles are given by the ratios between the
reflected wave recorded at the original receivers in
model B and the wave recorded at the mirror receivers
in the homogeneous medium. Figure 8 shows the
approximations of the reflection coefficients for model B,
obtained from lowrank (solid blue line) and FD (solid green
line), as compared to the theoretical reflection coefficients
(dashed red line)

We notice a very good approximation of the reflection
coefficients by the lowrank and finite differences methods.
Actually, comparing the relative errors of the achieved
approximations, shown in Figure 9, we can see that the
approximation by the lowrank method (blue line) is even
somewhat better than the one by FD (black line). Overall,
the relative errors of lowrank are lower and show less
fluctuation than those of the finite differences method.
Other experiments with other velocity contrasts at the
reflector confirm our findings reported here. Generally, the
lowrank reflection coefficients are slightly better than the
FD reflection coefficients.

Discussion and Conclusions

By means of numerical experiments in different models,
we have evaluated the absolute and relative performance
of 2D acoustic modeling using the lowrank method,
particularly with regard to the quality of the resulting
amplitudes. For the first part of the experiments, we
considered homogeneous media, in order to compare
the numerical results to the analytical solution of the
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Figura 6 – Comparison of the temporal traces of the
analytical solution with the solution obtained using the
lowrank method and finite differences on model A with ∆t =
0.0025 s.

Figura 7 – Experiments illustration performed to
approximate the reflection coefficients.

Figura 8 – Comparison of theoretical reflection coefficients
with lowrank method and finite differences for model B.

wave equation. In this way, we studied the response
of the lowrank method for various discretizations of
the same model, and compared it to the theoretical
response in kinematics and dynamics. From our tests,
we conclude that the quality of the results depend on
the spatial and temporal discretization, but it for every
spatial discretization, it was always possible to find a
temporal sampling interval for which the lowrank method
presents a dynamic error smaller than 1%. The reference
numerical solution, obtained by the finite difference code
from Seismic Un*x, produced less reliable amplitudes.
Moreover, it is more sensitive to numerical dispersion
for coarse spatial discretizations. This also affects the
kinematics as the waves tend to arrive slightly earlier than

Figura 9 – Relative error of the reflection coefficients
approximated by the lowrank method and finite differences
for model B.

the theoretical solution. It is to be observed that there is no
dispersion effect in lowrank modeling.

In a second set of tests, we evaluated the reflection
coefficients modeled by the lowrank method, again in
comparison to the SU FD code. Even though the lowrank
method does not explicitly include any amplitude effects,
the acoustic reflection coefficients are well approximated.

Summarizing, our tests have demonstrated that the
lowrank method can produce reliable acoustic wavefields,
both regarding traveltimes and amplitudes. This is
particularly important for large-scale problems, because
the computing cost of lowrank modeling scales much more
favorably with model size than that of Finite Differences.
Future studies will have to be carried out so as to
evaluate wether this excellent amplitude behaviour can
also be achieved in more general media, particulary those
exhibiting anisotropy.
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